:orphan: .. _ahelp_3dISC: ***** 3dISC ***** .. contents:: :local: | .. code-block:: none ================== Welcome to 3dISC ================== Program for Voxelwise Inter-Subject Correlation (ISC) Analysis #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Version 1.0.8, Feb 14, 2025 Author: Gang Chen (gangchen@mail.nih.gov) SSCC/NIMH, National Institutes of Health, Bethesda MD 20892, USA #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Introduction ------ Intersubject correlation (ISC) quantifies the similarity or synchronization of BOLD responses between two subjects experiencing the same stimulus, such as watching a movie or listening to music. The analysis is performed voxelwise using linear mixed-effects modeling, as detailed in the following paper: Chen, G., Taylor, P.A., Shin, Y.W., Reynolds, R.C., Cox, R.W., 2017. *Untangling the Relatedness among Correlations, Part II: Inter-Subject Correlation Group Analysis through Linear Mixed-Effects Modeling.* NeuroImage, 147, 825-840. **Input Requirements:** The input files for 3dISC consist of voxelwise correlation values from all subject pairs. If these correlations have not been Fisher-transformed, the `-r2z` option in 3dISC should be used to apply the transformation. When analyzing multiple groups, ISC values across groups must also be provided unless the groups are analyzed separately. Input files can be in AFNI, NIfTI, or surface (niml.dset) format. For *n* subjects, a total of *n(n-1)/2* input files should be supplied, ensuring no duplicate pairs. **Output:** 3dISC generates voxelwise effect estimates (e.g., ISC values) along with the corresponding t-statistics. **Preprocessing Recommendations:** For data preprocessing guidelines, refer to Appendix B of the above paper. To compute voxelwise ISC of time series between any two subjects, AFNI’s `3dTcorrelate` can be used. The LME platform supports a wide range of explanatory variables, including categorical variables (both between- and within-subject factors) and quantitative variables (e.g., age, behavioral data). However, the responsibility of correctly specifying the weights for each effect (e.g., contrasts) falls on the user. Determining the appropriate number and order of predictors can be particularly challenging, especially when dealing with more than two factor levels or interaction effects. To navigate this complexity, it is essential to understand two common factor coding strategies: **dummy coding** and **deviation coding**. A helpful resource on these coding systems can be found here: https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/ ### Example Scripts The four example scripts provided below demonstrate various modeling scenarios. If any of them resemble your data structure, you can use them as templates to build your own script. More examples may be added in the future, and user- contributed scenarios (including yours) are welcome. ### Required R Packages Before running 3dISC, ensure that the following R packages are installed: To install via the AFNI command line: rPkgsInstall -pkgs "lme4,snow" Alternatively, you can install them directly in R: install.packages("lme4") install.packages("snow") Once the 3dISC command script is prepared, you can run it by copying and pasting it into the terminal. However, a more practical approach is to save the script as a text file (e.g., `ISC.txt`) and execute it using the following command (assuming you are using the **tcsh** shell): nohup tcsh -x ISC.txt & Alternatively, to capture the output for later review, use one of the following commands: nohup tcsh -x ISC.txt > diary.txt & or nohup tcsh -x ISC.txt |& tee diary.txt & or, The advantage of these latter commands is that they log the execution progress into diary.txt, allowing you to review the output and troubleshoot any issues if something goes wrong. Example 1 --- Simplest case: ISC analysis for one group of subjects without any explanatory variables. In other words, the effect of interest is the ISC at the populaton level. The output is the group ISC plus its t-statistic. The components within parentheses in the -model specifications are R notations for random effects. ------------------------------------------------------------------------- 3dISC -prefix ISC -jobs 12 \ -mask myMask+tlrc \ -model '1+(1|Subj1)+(1|Subj2) \ -dataTable \ Subj1 Subj2 InputFile \ s1 s2 s1_s2+tlrc \ s1 s3 s1_s3+tlrc \ s1 s4 s1_s4+tlrc \ s1 s5 s1_s5+tlrc \ s1 s6 s1_s6+tlrc \ s1 s7 s1_s7+tlrc \ ... s2 s3 s2_s3+tlrc \ s2 s4 s2_s4+tlrc \ s2 s5 s2_s5+tlrc \ ... Example 2 --- ISC analysis with two groups (G1 and G2). Three ISCs can be inferred at the population level, G11 (ISC among subjects within the first group G1), G22 (ISC among subjects within the second group G2), and G12 (ISC between subjects in the first group G1 and those in the second group G2). The research interest can be various comparisons among G11, G22 and G12, and this is the reason the group column 'grp' is coded with three types of population ISC: G11, G22 and G12. By default each factor (categorical variable) is internally quantified in the model using deviation coding with alphabetically the last level as the reference. Notice the semi-esoteric weights for those comparisons with -gltCode: the first weight corresponds to the intercept in the model, which is the average effect across all the factor levels (and corresponds to the zero value of a quantitative variable if present). If dummy coding is preferred, check out the next script below. The components within parentheses in the -model specifications are R notations for random effects. Here is a good reference about factor coding strategies: https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/ ------------------------------------------------------------------------- 3dISC -prefix ISC2a -jobs 12 \ -mask myMask+tlrc \ -model 'grp+(1|Subj1)+(1|Subj2)' \ -gltCode ave '1 0 -0.5' \ -gltCode G11 '1 1 0' \ -gltCode G12 '1 0 1' \ -gltCode G22 '1 -1 -1' \ -gltCode G11vG22 '0 2 1' \ -gltCode G11vG12 '0 1 -2' \ -gltCode G12vG22 '0 1 2' \ -gltCode ave-G12 '0 0 -1.5' \ -dataTable \ Subj1 Subj2 grp InputFile \ s1 s2 G11 s1_2+tlrc \ s1 s3 G11 s1_3+tlrc \ s1 s4 G11 s1_4+tlrc \ ... s1 s25 G12 s1_25+tlr \ s1 s26 G12 s1_26+tlr \ s1 s27 G12 s1_26+tlr \ ... s25 s26 G22 s25_26+tlr \ s25 s27 G22 s25_27+tlr \ s25 s48 G22 s51_28+tlr \ ... The above script is equivalent to the one below. The only difference is that we force 3dISC to adopt dummy coding by adding a zero in the -model specification, which makes the weight coding much more intuitive. In this particular case, the three weights are associated with the three categories, G11, G12 and G22 (no intercept is assumed in the model as requested with the zero (0) in the model specifications). ** Alert ** This coding strategy, using no intercept, only works when there is a single explanatory variable (e.g., 'group' in this example). For cases with more than one explanatory variable, consider adopting other coding methods. ------------------------------------------------------------------------- 3dISC -prefix ISC2b -jobs 12 \ -model '0+grp+(1|Subj1)+(1|Subj2)' \ -gltCode ave '0.5 0 0.5' \ -gltCode G11 '1 0 0' \ -gltCode G12 '0 1 0' \ -gltCode G22 '0 0 1' \ -gltCode G11vG22 '1 0 -1' \ -gltCode G11vG12 '1 -1 0' \ -gltCode G12vG22 '0 1 -1' \ -gltCode ave-G12 '0.5 -1 0.5' \ -dataTable \ Subj1 Subj2 grp InputFile \ s1 s2 G11 s1_2+tlrc \ s1 s3 G11 s1_3+tlrc \ s1 s4 G11 s1_4+tlrc \ ... s1 s25 G12 s1_25+tlr \ s1 s26 G12 s1_26+tlr \ s1 s27 G12 s1_26+tlr \ ... s25 s26 G22 s25_26+tlr \ s25 s27 G22 s25_27+tlr \ s25 s48 G22 s51_28+tlr \ ... There is a third way to analyze this same dataset if we are NOT interested in the between-group ISC, G12. First, we adopt deviation coding for the two groups by replacing two groups G1 and G2 with 0.5 and -0.5. Then add up the two values for each row (each subject pair), resulting in three possible values of 1, -1 and 0. Put those three values in the group column in the data table. ------------------------------------------------------------------------- 3dISC -prefix ISC2c -jobs 12 \ -model 'grp+(1|Subj1)+(1|Subj2)' \ -qVars grp \ -gltCode ave '1 0' \ -gltCode G11vG22 '0 1' \ -gltCode G11 '1 0.5' \ -gltCode G22 '1 -0.5' \ -dataTable \ Subj1 Subj2 grp InputFile \ s1 s2 1 s1_2+tlrc \ s1 s3 1 s1_3+tlrc \ s1 s4 1 s1_4+tlrc \ ... s1 s25 0 s1_25+tlr \ s1 s26 0 s1_26+tlr \ s1 s27 0 s1_26+tlr \ ... s25 s26 -1 s25_26+tlr \ s25 s27 -1 s25_27+tlr \ s25 s48 -1 s51_28+tlr \ ... Example 3 --- ISC analysis for one group of subjects. The only difference from Example 1 is that we want to add an explanatory variable 'Age'. Before the age values are incorporated in the data table, do two things: 1) center the age by subtracting the cener (e.g., overall mean) from each subject's age, and 2) for each subject pair (each row in the data table) add up the two ages (after centering). The components within parentheses in the -model specifications are R notations for random effects. ------------------------------------------------------------------------- 3dISC -prefix ISC3 -jobs 12 \ -mask myMask+tlrc \ -model 'Age+(1|Subj1)+(1|Subj2)' \ -qVars Age \ -gltCode ave '1 0' \ -gltCode Age '0 1' \ -dataTable \ Subj1 Subj2 Age InputFile \ s1 s2 2 s1_s2+tlrc \ s1 s3 5 s1_s3+tlrc \ s1 s4 -4 s1_s4+tlrc \ s1 s5 3 s1_s5+tlrc \ s1 s6 -2 s1_s6+tlrc \ s1 s7 -1 s1_s7+tlrc \ ... s2 s3 2 s2_s3+tlrc \ s2 s4 4 s2_s4+tlrc \ s2 s5 -5 s2_s5+tlrc \ ... Example 4 --- ISC analysis with two groups of subject (Sex: females and males) plus a quantitative explanatory variable (Age). We are going to combine the modeling strategy in the third analysis of Example 2 with Example 3. In addition, we consider the interaction between Sex and Age by adding their product as another column (called 'SA' in the data table). The components within parentheses in the -model specifications are R notations for random effects. ------------------------------------------------------------------------- 3dISC -prefix ISC2c -jobs 12 \ -mask myMask+tlrc \ -model 'Sex+Age+SA+(1|Subj1)+(1|Subj2)' \ -qVars 'Sex,Age,SA' \ -gltCode ave '1 0 0 0' \ -gltCode G11vG22 '0 1 0 0' \ -gltCode G11 '1 0.5 0 0' \ -gltCode G22 '1 -0.5 0 0' \ -gltCode Age '0 0 1 0' \ -gltCode Age1vAge2 '0 0 0 1' \ -gltCode Age1 '0 0 1 0.5' \ -gltCode Age2 '0 0 1 -0.5' \ -dataTable \ Subj1 Subj2 Sex Age SA InputFile \ s1 s2 1 2 2 s1_2+tlrc \ s1 s3 1 5 5 s1_3+tlrc \ s1 s4 1 -4 -4 s1_4+tlrc \ ... s1 s25 0 -2 0 s1_25+tlr \ s1 s26 0 -1 0 s1_26+tlr \ s1 s27 0 3 0 s1_26+tlr \ ... s25 s26 -1 4 -4 s25_26+tlr \ s25 s27 -1 -5 5 s25_27+tlr \ s25 s48 -1 2 -2 s51_28+tlr \ ... Example 5 --- ISC analysis with two conditions (C1 and C2). The research interest is regarding the contrast of ISC between the two conditions. The basic strategy is to convert the data to the contrast between the conditions. In other words, obtain the contrast of ISC after the Fisher-transformation between the two conditions for each subject pair with a command like the following: 3dcalc -a subj1_subj2_cond1 -b subj1_subj2_cond2 -expr 'atanh(a)-atanh(b)' -prefix subj1_subj2 The function of inverse hyperbolic tangent 'atanh' is the same as the Fisher z-transform. Then follow Example 1 with the contrasts from the above 3dcalc output as input. Options in alphabetical order: ------------------------------ -cio: Use AFNI's C io functions, which is default. Alternatively -Rio can be used. -dataTable TABLE: List the data structure with a header as the first line. NOTE: 1) This option has to occur last in the script; that is, no other options are allowed thereafter. Each line should end with a backslash except for the last line. 2) The table should contain at least three columns, two of which are for the two subjects in each pair, 'Subj1' and 'Subj2'. These two columns code the labels of the two subjects involved for each ISC file that is listed in the column 'InputFile'. The order of the columns does not matter. Any subject-level explanatory variables (e.g., age, sex, etc.) can be specified as columns in the table. Each row should contain only one ISC file in the table of long format (cf. wide format) as defined in R. The level labels of a factor should contain at least one character. Input files can be in AFNI, NIfTI or surface format. AFNI files can be specified with sub-brick selector (square brackets [] within quotes) specified with a number or label. 3) It is fine to have variables (or columns) in the table that are not modeled in the analysis. 4) The context of the table can be saved as a separate file, e.g., called table.txt. Do not forget to include a backslash at the end of each row. In the script specify the data with '-dataTable @table.txt'. This option is useful: (a) when there are many input files so that the program complains with an 'Arg list too long' error; (b) when you want to try different models with the same dataset. -dbgArgs: This option will enable R to save the parameters in a file called .3dISC.dbg.AFNI.args in the current directory so that debugging can be performed. -gltCode label weights: Specify the label and weights of interest. The weights should be surrounded with quotes. -help: this help message -IF var_name: var_name is used to specify the column name that is designated for input files of effect estimate. The default (when this option is not invoked is 'InputFile', in which case the column header has to be exactly as 'InputFile' This input file for effect estimates has to be the last column. -jobs NJOBS: On a multi-processor machine, parallel computing will speed up the program significantly. Choose 1 for a single-processor computer. -mask MASK: Process voxels inside this mask only. Default is no masking. -model FORMULA: Specify the model structure for all the variables. The expression FORMULA with more than one variable has to be surrounded within (single or double) quotes. Variable names in the formula should be consistent with the ones used in the header of -dataTable. In the ISC context the simplest model is "1+(1|Subj1)+(1|Subj2)"in while the random effect from each of the two subjects in a pair is symmetrically incorporated in the model. Each random-effects factor is specified within parentheses per formula convention in R. Any effects of intereste and confounding variables (quantitative or categorical variables) can be added as fixed effects without parentheses. -prefix PREFIX: Output file name. For AFNI format, provide prefix only, with no view+suffix needed. Filename for NIfTI format should have .nii attached (otherwise the output would be saved in AFNI format). -qVarCenters VALUES: Specify centering values for quantitative variables identified under -qVars. Multiple centers are separated by commas (,) without any other characters such as spaces and should be surrounded within (single or double) quotes. The order of the values should match that of the quantitative variables in -qVars. Default (absence of option -qVarsCetners) means centering on the average of the variable across ALL subjects regardless their grouping. If within-group centering is desirable, center the variable YOURSELF first before the values are fed into -dataTable. -qVars variable_list: Identify quantitative variables (or covariates) with this option. The list with more than one variable has to be separated with comma (,) without any other characters such as spaces and should be surrounded within (single or double) quotes. For example, -qVars "Age,IQ" WARNINGS: 1) Centering a quantitative variable through -qVarsCenters is very critical when other fixed effects are of interest. 2) Between-subjects covariates are generally acceptable. However EXTREME caution should be taken when the groups differ substantially in the average value of the covariate. -r2z: This option performs Fisher transformation on the response variable (input files) if it is correlation value. Do not invoke the option if the transformation has already been applied. -Rio: Use R's io functions. The alternative is -cio. -show_allowed_options: list of allowed options -Subj1 var_name: var_name is used to specify the column name that is designated as as the first measuring entity variable (usually subject). This option, combined with the another option '-Subj2', forms a pair of two subjects; the order between the two subjects does not matter. The default (when the option is not invoked) is 'Subj1', in which case the column header has to be exactly as 'Subj1'. -Subj2 var_name: var_name is used to specify the column name that is designated as as the first measuring entity variable (usually subject). This option, combined with the another option '-Subj1', forms a pair of two subjects; the order between the two subjects does not matter. The default (when the option is not invoked) is 'Subj2', in which case the column header has to be exactly as 'Subj1'.